博客
关于我
opencv与numpy数组操作
阅读量:641 次
发布时间:2019-03-14

本文共 1087 字,大约阅读时间需要 3 分钟。

在开始之前,我们先来说一下彩色图像的组成。所有我们现在看到的彩色图像都是可以由三原色(Red、Green、Blue,简称RGB)按照一定比例混合而成的。因此,只要我们知道了三原色的比例,就可以调制出某种颜色。我们用小方块组合在一起,许许多多的小方块就可以拼凑出一个图像来。因此,我们用数组来表示图像的方法就显得尤为重要。

在代码中,如果我们用黑白图像来表示的话,我们就可以分为01黑白图像和灰度值图像。01黑白图像中,我们只有0和1,所以表示的不是很清楚。而灰度值图像和RGB图像中,我们把图像分为255个等级,数字越大则颜色越浅,最深的0代表黑色,最浅的255代表白色或红色、蓝色和绿色。

接下来,我们来看代码。在代码中,我们首先导入OpenCV和NumPy的库,并定义一个函数access_pixels来处理图像。这个函数的主要作用是遍历图像中的每一个像素,并将每个像素的灰度值变换为255减去原值。这样,深色的区域会变成浅色,反之亦然。通过这个简单的变换,我们可以直观地观察图像中像素的颜色分布变化。

然后,我们创建一个新的图像。我们使用NumPy的函数np.zeros来初始化一个全零的数组。对于RGB图像,我们需要创建一个长和宽都为400的三维数组,其中每个通道(R、G、B)的值都初始化为0。接着,我们可以将其中一个通道设为全255,以显示纯色的边缘。

为了验证代码的正确性,我们使用cv.imread读取一个现有的图片文件,并使用cv.imshow显示处理后的结果。同时,我们还注入了一些调试信息,以便了解图像的尺寸和通道数。通过查看输出信息,我们可以确认图像是否被正确读取和处理。

此外,我们还尝试了对图像进行一些基本的操作,比如计算处理时间。通过记录开始和结束时间,使用cv.getTickFrequency获取时间间隔,可以计算出处理像素所需的时间。这对于评估代码的效率非常有用。

在实际编码过程中,我们遇到了一个问题:在创建单通道图像时,OpenCV的显示函数cv.imshow可能会报错,原因是图像的数据类型不匹配。经过检查,我们发现自己忘记将数组转换为uint8类型。正确的做法是使用dtype=np.uint8来指定数据类型。这个小错误让我们意识到细节处理的重要性。

通过实践,我们对OpenCV和NumPy的结合使用有了更深入的理解。理解RGB图像的基础知识、掌握NumPy数组操作的方法,以及熟悉OpenCV的函数调用,对我们来说是一个宝贵的学习过程。虽然过程中遇到了一些小问题,但通过不断的调试和查阅资料,我们能够顺利完成代码的编写和测试。

转载地址:http://vhqoz.baihongyu.com/

你可能感兴趣的文章
Netty工作笔记0014---Buffer类型化和只读
查看>>
Netty工作笔记0050---Netty核心模块1
查看>>
Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
查看>>
Netty常见组件二
查看>>
netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
查看>>
Netty核心模块组件
查看>>
Netty框架的服务端开发中创建EventLoopGroup对象时线程数量源码解析
查看>>
Netty源码—2.Reactor线程模型一
查看>>
Netty源码—4.客户端接入流程一
查看>>
Netty源码—4.客户端接入流程二
查看>>
Netty源码—5.Pipeline和Handler一
查看>>
Netty源码—6.ByteBuf原理二
查看>>
Netty源码—7.ByteBuf原理三
查看>>
Netty源码—7.ByteBuf原理四
查看>>
Netty源码—8.编解码原理二
查看>>
Netty源码解读
查看>>
Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
查看>>
Netty相关
查看>>
Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)
查看>>
Network Sniffer and Connection Analyzer
查看>>